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Motivation: MEMS applications
High-cycle fatigue of micron-scale polycrystalline silicon films:

the role of the silica (SiO2)/silicon (Si) interface
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Bone growth and a growth plate
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Motivation: martensite transformations,

superelasticity, shape memory effects

M1
A

M2

σ

ε
AusteniteA and martensite

variantsM1,M2

A ⇆ M1,M2 — transformation strains

M1,M2 — twining
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General motivation: materials with variable

structures

Two approaches

⋄ Variants of plasticity (inelasticity) with internal parameters

— do not see interfaces

⋄ Considering two phase structures and corresponding local

stresses — unknown interfaces, nonconvex energy,

non-uniqueness, stability
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When, what, where and how?

I keep six honest serving-men:

(They taught me all I knew)

Their names are What and Where and When

And How and Why and Who.
Rudyard Kipling.The Elephant’s Child

• Given a material and a straining path,why, when, what andwhere

two-phase structures can appear?

• How a material transforms from one phase state to another?

Construction of transformation (“yield”) surfaces. Direct and reverse
transformations.
The orientation and the shape of the interfaces. Boundary value
problems. Non-uniqueness. Stability.
Heterogeneous deformation due to multiple appearance of new phase
domains.
Relationships between local and external strains. Macro-constitutive
equations (average strain – average stress).
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Kinetics of interfaces

• What strains can exist on the interface in a given material

and interface velocity (A tool: modified phase transition

zones)

• Isolated new phase inclusion. Spherically symmetric

two-phase deformations. Multiple growth of new phase

areas (laminates and quasi-ellipsoidal inclusions).

Relaxation times. Relations with stability.

• Interconnections between advancing crack and a
moving interface.

• Quasi-statical chemical reactions front propagation.

• Hysteresis phenomena in SMA and the interface kinetics.
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Preliminaries

• Phase boundaries — the surfaces of strain discontinuity at

continuous displacements

• A thermodynamic condition has to be put on the equilibrium

interface (Knowles& Abeyaratne, Grinfeld, James, Gurtin, ...)

• Moving interfaces within the framework of configurational

forces mechanics (Eshelby, Knowles& Abeyaratne, Maugin,

Gurtin,...)

• The type of strain localization due to phase transformations

depends on a strain state
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Equilibrium and moving interfaces

Free energy: f(F, θ)

θ = const =⇒ f(F, θ) ≡ W (F) — strain energy function

• Kinematic compatibility condition:[[u]] = 0 =⇒ [[F]] = f ⊗ m

• Traction continuity condition: [[S]]m = 0 (S = ∂f/∂F)

• Thermodynamic equilibrium : [[f ]] − f · S±m = 0

m · [[M]]m = 0 ⇐⇒ [[M]]m = 0 (1)

M = f I − FTS — Eshelby stress tensor,

µm = m · Mm, [[µm]] = 0

Linear thermodynamics approach: vΓ
m = −k[[µm]], k > 0

Motivation – non-negativity of dissipation (Knowles, 1979)

D = −
∫

Γ

vΓ
mm · [[M]]mdΓ > 0
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Two linear elastic phases

f(ε, θ) = min
−,+

{
f−(ε, θ), f+(ε, θ)

}
(2)

f±(ε, θ) = f±

0 (θ) +
1

2
(ε− εp

±) : C± : (ε− εp
±)

f

εp ε

γf+
0

f−

0

σ±(ε) = C± : (ε− εp
±), if ε

p
− = 0 =⇒ ε

p
+ = εp
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Admissible strains at equilibrium and moving

interfaces. Modified phase transition zones

x /∈ Γ : ∇ · σ = 0, θ = const, (3)

x ∈ Γ : [u] = 0, [σ] · n = 0, (4)

[µn] ≡ [f ] − σ : [ε] = −vΓ
n/L (5)

The jumps in strain or in stress across the interface can be

express through the strain or stress on one side of the interface

[ε] = K− (n) :q+, [σ] = S− (n) :m+ (6)

q+ , −C1 :ε+ + C :εp, m+ , B1 :σ+ + εp

K−(n) = {n ⊗ G−(n) ⊗ n}s, G−(n) = (n · C− · n)−1,

S−(n) = C− : K−(n) : C− − C−

B± = C−1
±

, C1 = C+ − C−, B1 = B+ − B−
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Admissible strains at equilibrium and moving

interfaces. Modified phase transition zones

vΓ
n = −L[µn], [µn] = [f ] − 〈σ〉 : [ε] (7)

We express[µn] through stress on one side of the interface and

the normal.

[µn] = γ − 1

2
σ+ :B1 :σ+ − σ+ :εp +

1

2
m+ :S− (n) :m+

whereγ(T ) = [f0]. If the tensorC−1
1 is nonsingular then

[µn] = γ∗ −
1

2
m+ :

(
B−1

1 − S−(n)
)

: m+ (8)

γ∗ , γ +
1

2
εp : B−1

1 : εp (9)

Strains which can exist on the interface form a phase
transition zone (PTZ) in a strain space
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Biaxial external strains

µ1 < 0,K1 < 0

The PTZ — a “passport” of a material that can suffer two-phase

deformations, a technique to study how a strain state affects the type of

strain localization due to phase transformation.
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Configurational forces and kinetics not far

from equilibrium
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Interconnections between a crack and a phase

transformation front.

Γδ

Σ

Γ

Ωu

e

Ωσ

n

n
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Entropy production

TP [S] = (J − 2γΣ)l̇ −
∫

Γ

[µn]v∗

ndΓ + D ≥ 0

µn = n · M · n, M = fE −∇u · σ, Mij = fδij − uk,iσkj

[µn] = γ − 1

2
σ+ :B1 :σ+ − σ+ :εp +

1

2
m+ :S− (n) :m+

The problem of finding the driving force[µn] acting on the interface is
reduced to strain or stress calculations on one side of the interface —
determined by the stress intensity factors as well as the Rice integral.

C− = C+ =⇒ [µn] = γ − σ+ :εp +
1

2
εp :S(n) :εp

εp = (ϑp/2)E2

σ+ : εp =
2KIϑ

p

√
2π(x∗ − l)

, εp :S(n) :εp = −2a(ϑp)2, a > 0

TP [S] = d∗

(
2KIϑ

p

√
2πξ∗

+ a(ϑp)2 − γ

)
v∗ −

(
2γΣ − K2

I

E

)
l̇ ≥ 0
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1D-localized phase transformations

x

x¤(t)

l(t)

ξ∗ = x∗ − l

TP [S] = d∗ (K∗(l, ξ∗) − γ) ξ̇∗−
(2γΣ −Kl(l, ξ∗) − d∗(K∗(l, ξ∗) − γ)) l̇ ≥ 0

If l̇ > 0 and2γΣ −Kl(l, ξ∗) > d∗(K∗(l, ξ∗) − γ) thenξ̇∗ > 0,

the transformation front moves away from the crack tip.

If ξ∗ → 0 thenK2
I /E → 2γΣ (the Griffits crack length).

• Interconnections between the sub-critical crack growth and the

transformation front development.
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Local fracture criterium

Local fracture takes place if the entropy accumulated due to

irreversible processes reaches a critical level (Chudnovsky, 1973):

tf∫

ts

σ{s}(x, t′)dt′ = s∗ (10)

σ{s}(x, t′)− the entropy production density

ts− the start time of the dissipative processes at the pointx

tf− the pointx is captured by the fracture front.
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Entropy fracture criterium

Tσ{s}(x, t′) =

(J(t′) − 2γΣ)l̇δ(x − l(t′)) + ωv∗δ(x∗(t
′) − x) + R(x, t′) (11)

J(l = x) − 2γΣ + ω(x∗ = x) + Θ(x, t) = Ts∗ (12)

Θ =

tf∫

ts

R(x, t′)dt′, R(x, t′) = ψ : ε̇p (13)

ω – entropy production at the transformation front at a moment

when the front passes via the pointx

J(l = x) is calculated at a moment when a crack reaches the

pointx.

• The crack growth is determined not only by processes at the

fracture front but also by the level of preparatory entropy storage.

– p. 20/31



Example: subcritical crack growth

• The dissipationR is localized in a crack tip vicinity∆V with a

characteristic sizeb.

• Θ = R∆t where∆t = b/l̇ is fracture time of the volume∆V .

If R = J/τ whereτ is a characteristic time then

Θ =
ζ

l̇
J, ζ = b/τ (14)

l̇ =
ζJ

Ts∗ + 2γΣ + ω − J
(15)

l∗ : J = Ts∗ + 2γΣ + ω, cf. : J = Jc

Ts∗ + 2ω

Ts∗ + ω + 2γΣ − J
ζJ + ωξ̇∗ ≥ 0 (16)
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Stress-assist chemical reactions front propaga-

tion.

• Chemical reactions of oxidizing type.

• The reaction is localized at the chemical reaction front.

• Reaction is sustained by the diffusion of an oxidizing gas

constituent through the solid oxide.

ν−A− + ν∗A∗ → ν+A+ (17)

A± – chemical formulae of solid constituents,A∗ – gas

ν−, ν∗, ν+ – stoichiometric coefficients.

Example: Si + O2 → SiO2 (ν− = ν∗ = ν+ = 1)
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Chemistry background. Chemical affinity

TPchem[S] = wA, w− chemical reactions rate

A =
∑

νkMkµk (18)

Mk – molar mass

µk – chemical potential per unit mass of the k-th component

νk – with the sign “+” if the k-th component is produced; with

the sign “−” in the other case.

Kinetics: chemical reactions rate

w = w (A), w(0) = 0

Chemical reaction front propagation

TPchem[S] = vΓA, vΓ = Φ (A)

Linear thermodynamic approach:vΓ = −κA, κ > 0
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Kinematics
ν−A− + ν∗A∗ → ν+A+

dx− = Fe
−
· dX−, dx+ = Fe

+ · dX+
g (19)

G

Fe
+

Fe
−

dX

dXg

V +
g

V+ V−

v+ v−

Configurations resulting from the chemical reactions and deformation
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• Opened system

• Three configurations:V0, Vg, vt.

Elastic strains

dx− = Fe
−
· dX−, dx+ = Fe

+ · dX+
g (20)

detFe
−

=
dv−
dV−

=
ρ0

ρt
−

, detFe
+ =

dv+

dV +
g

=
ρg

ρt
+

(21)

Fe
+

Fe
−

V +
g

V−

v+ v−
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Chemical transformations tensor

dXg = G · dX (22)

M− andM+ – molar masses of constituentsA− andA+

dV0 = ν−M−/ρ0 −→ dVg = ν+M+/ρg

detG =
dVg

dV0

=
ν+M+ρ0

ν−M−ρg

≡ g3, detG 6= ρ0/ρg (23)

G = gE, g =

(
ν+M+

ν−M−

ρ0

ρ+
g

)1/3

(24)

dx+ = F+ · dX+, F+ = Fe
+ · G = gFe

+ (25)

G

dX

dXg

V +
g

V+

v+
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Stresses. Constitutive equations.
A solid skeleton approach

f− = f−(Fe
−
, T ), f+ = f+(Fe

+, T ), f∗ = f−(ρ∗, T )

S− = ρ0

∂f−
∂Fe

−

, S
g
+ = ρg

∂f+

∂Fe
+

, p∗ = ρ2
∗

∂f∗
∂ρ∗

(26)

Energy release due to the chemical reaction front
propagation

Dsolid = − ρ0

ν−M−

∫

Γ

N · Asolid · vΓ dΓ

Asolid = ν+M+M̃+ − ν−M−M̃− (27)

where

M̃+ = f+ E − 1

ρg

(Sg
+)T · Fe

+, M̃− = f− E − 1

ρ0

ST
−
· Fe

−
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Chemical affinity tensor

Gas constituentA∗ : ρ̇∗ = ρ̂∗−
g

∇ ·(ρ∗v∗)

ρ̂∗v
Γ
g · Ng dΓ =

ν∗M∗

ν+M+

ρgv
Γ
g · Ng dΓ

TPfront[S] = − ρ0

ν−M−

∫

Γ

N · A · vΓ dΓ

A = ν+M+M̃+ − ν−M−M̃− − ν∗M∗M̃∗ (28)

M̃+ = f+ E − 1

ρ0

(Sg
+)T · Fe

+

M̃− = f− E − 1

ρ0

ST
−
· Fe

−

M̃∗ = µ∗ E

A‘classic′ =
∑

νkMkµk
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Kinetics

N · A = ANN, AN = N · A · N

TPfront[S] = − ρ0

ν−M−

∫

Γ

ANvΓ
N dΓ

vΓ
N = Φ (AN), vΓ

N = −κAN , κ > 0

1D-model

f±(ε±) = f±

0 +
1

2
C±ε2

±
σ± = C±ε±

A = γ∗ + ν−M−G
σ2

2ρ0C−

− ν∗M∗µ∗

γ∗ =
ν+M+

ρg

f+
0 − ν−M−

ρ0

f−

0 , G = 1 − g
C−

C+

, g =
ν+M+

ν−M−

ρ0

ρg
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Conclusions

• Modified PTZ for stationary moving interfaces. Kinetics not

far from equilibrium. Stability. Variety of behaviors in

dependence of material parameters.

• Interconnections between a growing crack and advancing phase

transformation front — basing on the Eshelby stress concept.

⋄ Configuration force acting on the interface in terms of the

stress intensity factors, as well as the Rice integral.

⋄ Inequalities are derived which must be satisfied in the case of

the sub-critical crack growth interconnected with an advancing

transformation front.

⋄ Subcritical crack growth — entropy criterion of the local

fracture is tried.
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Conclusions

• Stress-assist chemical reactions front propagation is

considered.

⋄ The expression of chemical affinity tensor is derived.

⋄ Introducing the intermediate reference configuration allowed

us to express the chemical potentials in terms of stresses related

by the constitutive equations of solid constituents of the reaction.

⋄ 1D-model is examined.

⋄ Further progress is expected on the way of taking into account

cross effects related with interconnections between the

deformable solid skeleton and diffusion of a gas constituent.
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